Acknowledgements

The International Refrigerated Transportation Association (IRTA), a Core Partner of the Global Cold Chain Alliance (GCCA), would like to thank all the members who were instrumental in the development of this valuable publication. In particular, GCCA would like to recognize:

Authors:

Patrick Brecht, Ph.D. – President, PEB Commodities, Inc.
Don Durm – Vice President – Customer Solutions, PLM Trailer Leasing
Bud Rodowick – Strategic Relations – Food Safety & OEMs, Thermo King

Contributor:

Stephen Neel, Ph.D. – Senior Technical Director, Global Cold Chain Alliance

Copyright © 2016 by the International Refrigerated Transportation Association
All rights reserved.

No portion of this work may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system without written permission from the copyright holder.

The information promulgated by the International Refrigerated Transportation Association (IRTA) is not intended to be a comprehensive resource with respect to the refrigerated warehousing industry. While the material has been compiled with care, IRTA, and the authors of the manual have not validated all of the information contained herein and do not assume any responsibility for its use, accuracy, or applicability. All users of the information unconditionally agree: (1) not to hold IRTA or the authors responsible in any manner or to any extent for the user’s action(s) or the consequences of such action(s) relating to the use of the information provided and (2) to indemnify IRTA, and the authors for all expenses, fees, costs, damages, awards, or other amounts incurred related to or arising from the user’s use of the information. As used above, IRTA shall mean the organizations and each organization’s directors, officers, employees, volunteers, members, and agents.
About IRTA

The International Refrigerated Transportation Association (IRTA) is a Core Partner of the Global Cold Chain Alliance (GCCA), a trade association that represents all major industries engaged in temperature-controlled logistics. As a GCCA Core Partner, IRTA supports the organization’s overall mission of growing the industry and leading the cold chain through the development of best practices, research, networking, and education. IRTA also advocates for members in regulatory arenas.

Vision

IRTA will promote and strengthen the refrigerated and transportation logistics industry.

Mission

IRTA is organized to cultivate, foster and develop commercial and trade relations between those engaged in all aspects of producing, importing, exporting, transporting, warehousing commodities requiring temperature and/or atmospheric controls and related services:

- To gather and disseminate data and information to members.
- To protect the interests of its members from unlawful and unjust measures and practices.
- To conduct activities toward promoting and strengthening the interests of those engaged in the transportation and handling of temperature and/or atmospheric controlled goods and related services.

History

IRTA was established in 1994 to meet a growing demand in the transportation industry. Prior to that time, no single association existed wherein refrigerated transportation companies would have the opportunity to exchange valuable information, ideas, and insights.

More information, including details on members in IRTA, can be found at www.gcca.org.
Table of Contents

INTRODUCTION

6

WHY A REFRIGERATED TRANSPORTATION BEST PRACTICE GUIDE?

6

TASK FORCE ROSTER

7

1. PRE-REQUISITE PROGRAMS AND DEFINED FOOD SAFETY PROCEDURES

7

1.1. **APPROPRIATE EQUIPMENT DESIGN AND MAINTENANCE**

8

1.2. **VEHICLE AND EQUIPMENT STORAGE**

8

1.3. **FOOD SAFETY PROCEDURES (FSP)**

8

1.4. **TEMPERATURE REQUIREMENTS**

9

1.5. **TIME & TEMPERATURE DEVIATIONS AND CORRECTIVE ACTIONS**

9

1.6. **SEGREGATION OF GOODS**

9

1.7. **BULK FOODS**

10

1.8. **SANITATION AND EQUIPMENT STANDARDS**

10

1.9. **OTHER CONSIDERATIONS**

10

2. REFRIGERATED TRAILER SANITARY AND CONDITION INSPECTION

11

2.1. **CLEANING AND SANITATION**

11

2.2. **SANITATION STANDARDS**

11

2.3. **TRAILER CONDITION INSPECTION REQUIREMENTS**

12

3. REFRIGERATION UNIT OPERATING PROCEDURES

12

3.1. **PRE-LOADING**

12

3.2. **IDENTIFY AND PROGRAM UNIT SET-POINT**

12

3.3. **SELECT MODE OF OPERATION**

13

3.4. **MULTI-TEMPERATURE REFRIGERATED TRAILERS**

14

4. PRE-COOLING TRAILERS

15

4.1. **TRAILER SETTINGS**

15

4.2. **PRE-COOLING SETTINGS**

15

4.3. **PRE-COOLING NOTIFICATIONS**

16

5. LOADING PROCEDURES

16

5.1. **TRAILER ASSIGNMENT AND PRE-LOADING SAFETY INSPECTION**

17

5.2. **REFRIGERATION UNIT OPERATING PROCEDURES – PRE-LOADING**

18

5.3. **PRODUCT PACKAGING**

19

5.4. **STAGING THE PRODUCT (PALLETS) AND CARGO TEMPERATURES**

19
5.5. **LOADING THE TRAILER** 19
5.6. **TRAILER LOADING BEST PRACTICES** 21
5.7. **AIRFLOW** 22
5.8. **REFRIGERATION UNIT OPERATING PROCEDURES – POST-LOADING** 25
5.9. **TRAILER POST-LOAD VERIFICATION AND INSPECTION** 25
5.10. **SECURING THE LOADED TRAILERS FOR STAGING** 25

6. **STAGING LOADED TRAILER BACK ON TO THE YARD** 25
6.1. **MONITORING OF STAGED TRAILERS** 26

7. **DEPARTURE AND ARRIVAL PROCESS FOR LOADED TRAILERS** 27
7.1. **CENTRALIZED CHECK IN LOCATION** 27
7.2. **ARRIVAL PROCEDURES – INBOUND, OUTBOUND CARRIER** 27
7.3. **DEPARTURE PROCEDURES – INBOUND CARRIER** 27
7.4. **DEPARTURE PROCEDURES – OUTBOUND CARRIER** 28
7.5. **POST-TRIP INSPECTION – END OF ROUTE** 29

8. **EN-ROUTE COMPLIANCE REQUIREMENTS** 30
8.1. **COMPLIANCE REQUIREMENTS** 30
8.2. **DATA COLLECTION** 30
8.3. **COMPLIANCE REPORTING** 31

9. **LOAD ACCEPTANCE PROCEDURES** 31

10. **RECORDS RETENTION** 32

11. **CONCLUSION** 33

12. **APPENDIX** 34
12.1. **TRAILER INSPECTION CHECKLIST** 34
12.2. **CHECKLIST FOR PROPERLY STAGING PRODUCTS FOR LOADING** 35
12.3. **TRAILER LOADING CHECKLIST** 36
12.4. **STOWAGE CHECKLIST** 36
12.5. **SHIPPING CHECKLIST** 37
12.6. **ARRIVAL PROCEDURES – INBOUND CARRIER** 38
12.7. **ARRIVAL PROCEDURES – OUTBOUND CARRIER** 39
12.8. **RECEIVING CHECKLIST** 40
Introduction

In April 2016, the Food and Drug Administration (FDA) published its final rule for the Sanitary Transportation of Human and Animal Food (STF). The rule, which became effective on June 6, 2016, establishes requirements for shippers, loaders, carriers by motor or rail vehicle and receivers involved in transporting human and animal food to use documented sanitary practices to ensure the safety of that food. This action was part of the FDA’s larger effort – and requirement -- to focus on prevention of food safety problems throughout the food chain, and is part of their implementation of the Sanitary Food Transportation Act of 2005 (2005 SFTA) and the Food Safety Modernization Act of 2011 (FSMA).

The STF rule is one of seven foundational regulations aimed at creating a modern, risk-based framework for food safety. The goal of the final STF is to prevent practices during transportation that create food safety risks, such as failure to properly refrigerate food, inadequate cleaning of vehicles between loads, and failure to properly protect food.

This industry “Best Practices Guide” can be applied to food items that are Temperature Controlled for Safety (TCS) as well as those that are Temperature Controlled for Quality (TCQ), and does not differentiate between the two categories. The parameters included in the guide are considered to present the highest or most stringent best practices. The authors, however, understand that some TCQ foods are less sensitive to quality degradation and a risk-based assessment of products being transported may result in the determination that certain practices detailed in the guide are not necessary to maintain the desired product quality. In such cases, it is recommended that the risk-based assessment and modified practices identified be provided to the shipper, loader, carrier and receiver as part of the transport process.

Why a Refrigerated Transportation Best Practice Guide?

The Executive Summary of the Final STF Rule states that: “This rule builds on current safe food transportation best practices and is focused on ensuring that persons engaged in the transportation of food that is at the greatest risk for contamination during transportation follow appropriate sanitary transportation practices. The rule is flexible to allow the transportation industry to continue to use industry best practices concerning cleaning, inspection, maintenance, loading and unloading of, and operation of vehicles and transportation equipment to ensure that food is transported under the conditions and controls necessary to prevent adulteration linked to food safety.”

Given the importance placed on best practices in the Final Rule, the International Refrigerated Transportation Association (IRTA) decided to create this Refrigerated Transportation Best Practice Guide to assist shippers, loaders, carriers and receivers in understanding and adopting industry best practices.

The STF ruling identifies shippers as the primary responsible holder when it comes to determining appropriate standards for sanitary and safe transportation of food products. The FDA defines shippers as a person who initiates a shipment of food by motor vehicle or rail vehicle. However, carriers, loaders and receivers must also abide by the STF ruling, agree to designated shipper requirements, and perform as expected and per shipper requirements.
In other words, many in our industry will be affected by the FDA’s STF ruling, and we are all responsible for being educated and prepared to meet the resulting requirements. Ultimately, we are all responsible for food safety and the safe transportation of food.

While impossible to be all-encompassing, the goal of this Best Practices Guide, as prepared by the IRTA, the Global Cold Chain Alliance (GCCA) and a task force of diverse industry experts from transportation, academia, warehousing and industry suppliers, is to help companies across the food supply chain meet or exceed the STF rulings, ensure ongoing food safety throughout our industry, and positively impact the sanitary transportation of food to consumers.

Task Force Roster

- Billy Adams, Americold Logistics
- David Benjamin, Locus Traxx Worldwide
- Patrick Brecht, Ph.D., PEB Commodities, Inc.
- Don Durm, PLM Trailer Leasing
- Robert Fay, Florida Freezer L. P.
- Dan Gayford, Americold Logistics
- Vincent Gordon, Procurio, Inc.
- Jim Gray, K & J Trucking
- Matt Luckas, Hanson Logistics
- Greg Quast, RLS Logistics - Newfield Logistics Center
- Bud Rodowick, Thermo King Corporation
- Buddy Yantz, Blue Bunny/Wells Enterprises, Inc.
- Tori Liu, Global Cold Chain Alliance
- Stephen Neel, Ph.D., Global Cold Chain Alliance
- Lowell Randel, Global Cold Chain Alliance

1. Pre-Requisite Programs and Defined Food Safety Procedures

The relationship between shippers, carriers, loaders and receivers is key to maintaining an uninterrupted cold chain and more important than ever to ensure that expectations are clearly defined, communicated and documented in appropriate food safety plans and contracts. All parties should understand their roles and responsibilities in meeting the guidelines identified by the shipper to ensure food safety and protect liabilities including lawsuits and claims due to failure to meet specifications.

Bills of Lading, waybills or similar documentation of transport requirements should have clear and measurable requirements that eliminate the possibility of misinterpretations or legal dispute. For example, the variables are enormous when it comes to temperatures in trailer and in product; simply stating what the thermostat should be set at for a particular load and trailer configuration will provide an attainable action.

Following are suggested communication points and basic pre-requisite items for shippers and carriers to consider when determining/negotiating transportation requirements. Processes will vary by business model and situation but general pre-requisites transcend most types of refrigerated trucking and effectively cover the basics. The end goal is always to ensure a seamless cold chain and to promote positive working partnerships that benefit all parties. *In the end, carriers, loaders and receivers should verify that they have the final detailed instructions and requirements from the shippers in writing to ensure seamless and sanitary transport of food.*
1.1. Appropriate Equipment Design and Maintenance

Proper design, performance and maintenance of equipment used to handle, transport and store perishable foods is a fundamental pre-requisite of safe food handling, and a core industry best practice. Selecting the proper equipment for food transportation is a management decision, and clear communication between shipper, carrier and receiver with the appropriate equipment supplier is recommended. Equipment should be capable of reaching and maintaining specified temperatures for sanitary food transport under normal and customary operating conditions. Equipment manufacturing design and performance specifications should be referenced, understood and acceptable before selecting equipment for refrigerated food use.

Likewise, once the desired equipment has been identified and selected for the sanitary transport of food, the equipment should be properly and regularly maintained. Maintenance includes physical and sanitary conditions suitable for sanitary food transport. Equipment checklists and maintenance protocols are located elsewhere in this document and/or through GCCA core partners.

1.2. Vehicle and Equipment Storage

Vehicles and transportation equipment should be stored in a manner that prevents harborage of pests or becoming contaminated in any other manner that could result in food becoming unsafe for human or animal consumption. This industry best practice applies not only to those vehicles and transportation equipment in service, but to trucks, trailers and handling equipment that is not in use. Key elements of a good vehicle and equipment storage plan include a monitored pest control program; secure storage areas and sanitation records to support proper put-away and return-to-service sanitation and maintenance programs.

1.3. Food Safety Plan (FSP)

Food Safety Plans are an industry best practice that results in a cooperative effort between the shipper, loader, carrier and receiver of perishable foods, and should be coordinated such that food is transported in a sanitary manner. In order to accomplish this over-arching goal, clearly defined and written transportation procedures, specifically related to maintaining food safety, should be developed and shared with all parties involved in the transport of perishable foods. These types of plans should include, at a minimum, specifications or parameters for packaging, stowage, temperature management, sanitation and handling. Food safety procedures should be product specific, but can include general as well as specific instructions for maintaining product safety during transit. Facilities with Food and Drug Administration (FDA) or United States Department of Agriculture (USDA) regulatory plans in place (including but not limited to Hazard Analysis of Critical Control Points [HACCP], Good Manufacturing Practices [GMP], Standard Operating Procedures [SOP], or Sanitation Standard Operating Procedures [SSOP], or other certification programs [GFSI, BRC, SQF, ISO, etc.]) can reference those plans as part of a comprehensive FSP for transport of perishable foods.
1.4. Temperature Requirements

Naturally, the type of goods being transported will determine the temperature requirements. The FSP should include a specific numeric temperature or a range of temperatures in either Fahrenheit or Celsius to be maintained during transport with specified tolerances specified “not to exceed” (also called Upper Control Limit, UCL) and “not below” (also called Lower Control Limit, LCL) margins. Plans that reference simply ‘frozen’ or ‘chilled’ as temperature requirements should not be accepted.

GCCA members may also access the Commodity Storage Manual that offers explicit details about the storage and transportation conditions necessary to maintain food safety and ideal food quality. As the carrier/loader/receiver is liable for both food safety and cargo quality/condition during transport, understanding the distinct differences between the two and the impact of temperature on each is critical to successful fulfillment of the carriage contract.

If a temperature monitoring device is used during transport the shipper and carrier should agree upon the parameters of use, including but not limited to:

- What frequency of data should be collected?
- What tolerances will be allowed?
- How should the data be collected and transmitted?

1.5. Time & Temperature Deviations and Corrective Actions

Shipper specified transport temperatures; including set-point temperature as well as upper control limit (UCL) and lower control limit (LCL) are used to establish the desired temperature zone as well as minimum and maximum safe zones for the product. However, if the UCL is exceeded during transit for a specified cumulative exposure times, the deviation may result in unsafe food. The written Food Safety Procedures should clearly identify the procedures to be taken if cumulated time by temperature deviations occurs in transit, including provisions for product inspection and the criteria for determining if food safety has been compromised. Corrective Actions for preventing further or repeat damage as well as possible disposition of damaged goods should be included.

1.6. Segregation of Goods

Shippers should provide clear instructions on the co-mingling of goods and provide special instructions as desired. Carriers, especially ones engaged in mixed load, less than truckload (“LTL”) and/or multi-stop services, may be held liable for cross contamination if they fail to follow shipper instructions. Remember all practices should focus on reducing safety risks and allows shippers, carriers, loaders and receivers to exercise best judgment in the development of FSPs and interpretation. Depending on the situation, it is recommended that the shipper include written

1 Condition and quality with respect to fresh fruits and vegetables are terms of art used by commercial and regulatory authorities to describe the general marketability of the products. The term condition relates to defects that change over time whereas the term quality pertains to defects, which are of a permanent nature and do not change in severity or incidence over time.
exclusions or specific instructions when necessary. For example, list specific goods that should not be transported in the same trailer (such as fresh produce in ventilated boxes alongside or under fresh poultry).

1.7. Bulk Foods

Shippers of refrigerated Bulk Foods are required to ensure the safe transport of the commodity, including communication with others in the integrated supply chain (loaders, carriers and receivers). Written procedures for the safe loading, storage and transport of the bulk food should be developed and implemented. These procedures should include the proper temperature parameters, including set-point temperatures as well as UCL and LCL temperatures. Cleaning and sanitation of bulk food containers (trailers) is a critical step in the food safety procedures, and should include proper cleaning and sanitation procedures as well as information about the most recent cleaning of the trailer. The carrier should be prepared to provide information about the recent cargo shipments as well as cleaning and sanitation records for the bulk food trailer upon request. Maintenance of bulk transport vehicles is important, and the carrier should develop written procedures for maintaining the trailer and be prepared to provide that information upon request.

1.8. Sanitation and Equipment Standards

The shipper’s Food Safety Plan should clearly address sanitation and/or cleaning of transportation equipment. Moreover, cleaning methods, including the use of chemicals, and frequency of cleaning raises possible conflicts with environmental laws and local, state and federal water use and water drainage/runoff issues. In many jurisdictions, carriers are prohibited from washing their trucks because of local regulations designed to protect from water runoff and water quality issues. This places carriers in the position of having to choose which regulation to follow.

Examples of factors/Items to address in a FSP might include:
- Define “sanitized” versus “clean”
- Define specific action list – visual inspection, wash down, etc.
- Clarify equipment rejection and remedy standards
- What documents will be accepted as verification
- Responsibility of carrier, loader, etc.

Trailer sanitation should be verified prior to loading as well as during transit. A Trailer Inspection Checklist has been provided in the Appendix of this document.

1.9. Other Considerations

A solid FSP/pre-requisite transportation process should include other factors such as:
- Rates and terms
- Load configuration/dunnage
- Identification of other involved parties such as brokers, and agents
- Limits of liability
• Insurance requirements
• Authorized personnel and contacts

2. Refrigerated Trailer SANITARY AND CONDITION INSPECTION

Equipment transporting human or animal food items requires a higher level of inspection and maintenance. Equipment needs to be clean and otherwise suitable for the transport of food items or goods associated with the manufacture of food items. Improper or incomplete cleaning and/or sanitizing practices can allow contaminants to spread. Requirements for cleaning, sanitizing and inspecting equipment should apply to all shippers, carriers, loaders and receivers. However, shippers continue to hold primary responsibility for sanitary conditions of transport – specifically in documenting the required procedures expected -- unless the carrier has entered into a written agreement with the shipper to assume this responsibility.

Competent supervisory personnel, commonly called a Qualified Individual (QI), should be designated to ensure that sanitary conditions are met to the satisfaction of the shipper. The QI would generally be responsible for developing a facility’s Food Safety Plan (FSP), and generally includes establishing and implementing a food safety system that includes an analysis of hazards and risk-based preventive controls.

2.1. Cleaning and Sanitation

Cleanliness prevents bacterial, chemical, and odor contamination of food product loads. Remove all loose debris and wash or sweep the floors clean. The floor drains and grooves should be free of debris so drainage will not be blocked. Certain cleaning procedures may be required by law (for example: in cases where a meat product may become contaminated by direct or indirect contact with the interior surfaces of the vehicle) or due to specific and individual Food Safety Plan requirements.

Certain food products, such as fatty or oily goods such as butter, oleomargarine and meats, are highly susceptible to strong odor contamination. Fresh fruit, such as apples and bananas, are also susceptible to odor absorption. Thorough cleaning and air sanitation of boxes previously used for hauling odorous products such as fish, or cabbage is necessary to prevent contamination.

2.2. Sanitation Standards

Shippers are encouraged to develop and implement procedures that specify their practices for cleaning, sanitizing and inspecting their equipment. Factors that need to be considered include: 1)
how the vehicle/equipment is being used; and 2) the production stage of the food being transported (raw vs. finished product; open vs. closed container).

2.3. Trailer Condition Inspection Requirements

Equipment requirements vary for refrigerated trailers and will be determined by cargo hauled along with applicable Food Safety Plans and requirements as deemed appropriate by the shipper. To guide you, see the Appendix for example checklists that represent common requirements for refrigerated trailers and refrigeration units.

NOTE: Drivers should be required to conduct physical inspections of their assigned vehicles prior to departure. Inspections and checklists will vary by location.

3. Refrigeration Unit Operating Procedures

Most refrigeration units for trucks and trailers, also known as Transportation Refrigeration Units (TRU), are equipped with computerized controls, and Electronic Throttling Valves (ETV). These computerized refrigeration units offer significant benefits to transportation companies, drivers, shippers and receivers. The refrigeration unit’s computer system includes various levels of guarded access thereby protecting the refrigeration unit from tampering and unwelcome changes.

The computerized system also permits the operator to set up pre-determined temperature management conditions including critical control limits for perishable foods. Product storage guidelines can be utilized to help set up carrying temperature parameters for perishable and temperature sensitive products transported in these refrigeration units. In this guidebook, we have selected some of the features from computerized truck and trailer refrigeration units to demonstrate uses and benefits of these technologies for food safety and carriage of perishable foods.

Important to note: Transport refrigeration units should always be operated in accordance with the manufacturer’s refrigeration unit operating manual as settings and equipment performance characteristics may and do vary from manufacturer to manufacturer. It’s imperative to follow specified refrigeration unit operating procedures when transporting refrigerated cargo, as well as the shipper’s written specifications and the Preventative Controls Qualified Individual (PCQI)/facility’s Food Safety Plan (FSP).

3.1. Pre-Loading

Before picking up a load, always run the refrigeration unit in high speed cool for at least 20 minutes and perform an automatic Pre-Trip test. The unit MUST pass the Pre-Trip test. If it doesn’t, follow your companies prescribed procedures.

3.2. Identify and Program Unit Set-Point

Truck and trailer refrigeration unit microprocessors, also known as data loggers, offer technological advances that can markedly reduce human errors, driver decision making and driver intervention. The computerized refrigeration unit takes complex commodity-related decision-making out of the
hands of the driver and utilizes the expertise of commodity specialists and experts to assist the carrier in setting up custom-tailored computerized systems for their valued shippers and receivers. It should be noted that carriers using these computerized systems should seek guidance from subject matter experts in order to optimally set up shipper derived and specified carrying conditions for the safe carriage of perishable cargoes.

These technological advances, which are available with computerized refrigeration units, can be incorporated directly into quality control and food safety plans. The data logger provides the record keeping and verification that shippers, receivers and carriers can incorporate into their quality control and food safety plans. Data loggers store data and generate graphs, tables, and printouts for recording and verifying time and temperature in-transit.

The benefit of these systems is that the driver now makes fewer decisions and fewer mistakes. Driver-related errors can be reduced because tasks like setting the thermostat, initiating start of trip, conducting a pre-trip, setting the mode and initiating the defrost are made easier and simpler.

Start of Trip: The “start of trip” feature offered with computerized refrigeration units are simple to use and, importantly, it is a critical ingredient for establishing when the carrier started the trip and potentially when the carrier took care and custody of the cargo. Accordingly, it is crucial that the start of trip feature be initiated in order to ensure that the time and date of a trip is properly entered and documented for future reference. The “start of trip” is the beginning of a road map that can clearly help show when the accountability shifts from shipper to the carrier to the receiver.

Computerized Pre-trip: “Pre-tripping” the refrigeration unit and documenting the time and date of pre-trip is a key ingredient to assuring that the refrigeration unit is operating correctly and to preventing losses and mitigating claims and litigation. Pre-tripping the refrigeration unit should be accomplished before each line haul trip. It can be easily accomplished and recorded anytime. As part of the central nervous system of the refrigeration trailer, the refrigeration unit can be automatically pre-tripped whenever the unit is running.

As a general rule, users should set the unit controller to the desired set-point temperature and other settings (such as OptiSet™ in Thermo King units or Intelliset™ in Carrier Transicold units), as determined by product and/or shipper requirements. Refer to the unit Operators Manual for instructions on how to operate your specific unit. Once the set-point and other key settings are programmed, always double-check the settings to ensure there were set properly and to help prevent potential cargo damage that can result from an improperly set point temperature and/or other refrigeration unit settings.

3.3. Select Mode of Operation

Select the proper operating mode as appropriate for the cargo being transported and/or per shipper requirements. Choose either the ‘Continuous Run’ or the CYCLE-SENTRY (also known as “START-STOP”) mode appropriate for the cargo being transported. Operating a unit on CYCLE-SENTRY with cargo that requires tight temperature control or continuous airflow operation is not recommended and can result in product hot spots and/or top freezing. Refer to the most recent CYCLE-
SENTRY/START-STOP Operation & Diagnosis manuals from your refrigeration unit manufacturer for additional details.

Before loading product, pre-cool the trailer or container to the desired carrying temperature unless otherwise specified by the shipper and carrier. Turn the refrigeration unit ‘OFF’ when product is ready to be loaded and BEFORE box doors are opened. Additional information about pre-cooling is provided elsewhere in this document.

After loading is complete, close the doors immediately, start the refrigeration unit and re-confirm that the correct operating mode and settings have been selected.

Initiate a manual defrost cycle to remove any frost or ice from the evaporator coil and to help ensure maximum cooling performance after defrost is completed. When defrost is complete, the unit should return to normal operation. The box temperature should then begin to return toward the ‘desired’ cargo temperature.

3.4. Multi-Temperature Refrigerated Trailers

With the growth of the food service industry, the fleet of multi-temperature refrigerated trailers has continued to increase in size and significance. Multi-temperature refrigerated trailers are equipped with evaporators and host unit controls that provide different temperatures in one trailer. These units now feature microprocessors that control, monitor, pre-trip and trouble-shoot each temperature zone within the complete multi-temperature system.

Some of the features offered with single-temperature refrigeration units have been incorporated into multi-temperature refrigeration systems. Designing and using advanced multi-temperature technologies requires that users pay special attention to environmental conditions, commodity mixes, temperature control, airflow, bulkheads, driver access, side doors, walk ramps and lighting. These trailers have to work as a system that specifically meets the unique needs of buyers, drivers and customers.

Industry Best Practices should include a detailed and clearly defined written procedure, created by the shipper, outlining the parameters and proper temperature management of multi-temperature trailers. Additionally, while it is generally acceptable to transport chilled and frozen products in the same multi-temperature trailer provided the aforementioned environmental conditions are met, it is not advisable to transport ambient (dry) and refrigerated (chilled and/or frozen) products in the same multi-temperature trailer. Furthermore, it is recommended that hazardous cargo (i.e. chemicals and cleaning supplies) never ship with edible animal and human food in the same trailer.
4. Pre-Cooling Trailers

Pre-cooling trailers is a crucial part of the refrigerated distribution process and represents an industry Best Practice for carriers. It is imperative that every trailer is pre-cooled before the loading process begins to remove residual heat. Loading a warm trailer with refrigerated product will result in a transfer of thermal energy from the product to the trailer. The warmth of the trailer will draw the cold energy out of the product starting the process of thermal inertia and putting product quality at risk.

Due to the radiant heat load of the sun (infra-red light), heat is transferred into the trailer when it is empty and not running. The air in the trailer as well as the truck’s structural members, interior skins and insulation absorb heat. Pre-cooling the trailer removes this residual heat and protects the cargo from heat-related damages.

4.1. Trailer Settings

Once a trailer is assigned for a trip, it should be re-located to an area designated and cleared of any pallets, shipping materials or debris, and cleaned and sanitized per the shipper’s specifications or the facility’s Preventative Controls Qualified Individual (PCQI) FSP. If specified by the shipper, in writing, the trailer should be pre-cooled prior to loading.

4.2. Pre-Cooling Settings

When pre-cooling the trailer, the thermostat should be set to the desired carrying temperature for single temperature trailer or to multiple temperatures for the multi-temperature host unit and remote evaporator unit. The refrigeration unit should run at the desired carrying temperature until the unit shifts to low speed operation just before loading the cargo. Generally, pre-cooling a trailer can be accomplished in less than two hours.

The trailer refrigeration settings should be adjusted in accordance with shipper’s requirements (i.e. fresh, frozen or multi-compartment). Pre-cool the entire trailer as a single compartment.

For pre-cooling purposes, the trailer should be pre-cooled to the coldest temperature required by the cargo being hauled. For example, if the route calls for a multi-temperature load of fresh and frozen, it should be pre-cooled to the designated frozen requirement.

It should be noted, however, that most international transportations companies have policies “AGAINST” pre-cooling refrigerated containers in a hot humid and open environment. Refrigerated loading docks with cold tunnels are recommended. In many but certainly not all loading facilities, cold tunnels are situated tightly duct between the climate controlled loading dock and the
container. The cold tunnels prevent outside ambient air from entering the refrigerated dock and the interior of pre-cooled containers.

When perishable cargo is loaded in a hot humid ambient environment, moist air can enter the interior of the pre-cooled container when the doors are opened. Using this scenario, the possibility exists that moisture can condense (dew point condition) on the interior surfaces of the pre-cooled container. Under hot humid conditions, we have typically noted condensation at the rear of the pre-cooled container/on the ceiling. The concern is that moisture on the ceiling might fall on the cartons. In open conditions with hot humid air, we also have witnessed condensation forming on the exposed cartons ("cargo sweat") when the supplier moves the refrigerated cargo from the cold room to a hot, humid dock or open space. Under hot, humid conditions, the problem of cargo sweat (moisture on the cartons) will likely persist even if the refrigerated container is not pre-cooled.

4.3. Pre-Cooling Notifications

Pre-cooling trailers may take up to two hours or possibly more to maintain stable temperatures. Trailers outfitted with real-time telematics devices can automatically provide compartmental air temperature verification and notify personnel when the trailer is ready for relocation to the appropriate dock door for loading.

For those trailers not outfitted with real-time telematics, manual temperature readings will need to be taken by appropriate personnel to confirm that the trailer has achieved the proper temperature levels. This can be done with a handheld and properly calibrated temperature device.

Note: Refrigeration unit display readings should not be used to determine the pre-cooling status because they do not accurately portray the compartmental temperatures.

Remember to turn the refrigeration unit OFF after the trailer/box reaches the desired pre-cooled temperature and during the loading process. This will minimize heat and humidity entering the box.

5. Loading Procedures

The way cargo is loaded into a refrigerated trailer, body, or box, can have a significant effect on product quality. Proper loading will help ensure cargo quality/condition is maintained throughout its journey and mitigate risks for shippers. Many factors and steps should be considered to ensure proper loading procedures including choosing the proper trailer, product packaging, cargo temperature, refrigeration unit operating procedures, and airflow. Loaders, carriers and receivers should always cross-check procedures with the shipper/PCQI Food Safety Plan (FSP) to ensure requirements are met and actions are taken to ensure compliancy.

Loaders (and un-loaders), in particular, play a crucial role in ensuring sanitary transportation operations, as they are the people on the docks who have eyes on the equipment and product. Industry best practices stipulate that before loading food not completely enclosed by a container onto a vehicle or into transportation equipment, the loader should determine, considering as appropriate, specifications provided by the shipper (in FSP), that the vehicle or transportation equipment is in appropriate sanitary...
condition for the transport of the food. In other words, make sure it is in adequate physical condition and free of visible evidence of pest infestation and previous cargo that could cause the food to become unsafe during transportation.

Likewise, before loading food that requires temperature control for safety, the loader should verify according to the specifications provided by the shipper (in FSP), that each mechanically refrigerated cold storage compartment or container is adequately prepared for the transportation of such food, including that it has been properly pre-cooled, if necessary, and meets other sanitary conditions for food transportation.

5.1. Trailer Assignment and Pre-Loading Safety Inspection

Once the correct trailer is assigned, prepared and pre-cooled (if specified by the shipper), it should be moved to the designated dock door for loading. When the trailer has been backed into place for loading, it must be properly secured.

Suggested steps include:

- Secure the Glad Hand Locks
- Secure the Wheel Chocks
- Ensure the trailer is properly spotted in the Dock Door
- Ensure that the dock door is not opened until Trailer is spotted and secured

Once the trailer is physically secured and in position, warehouse personnel should:

- Secure the Dock Door Seals
- Raise the Dock Plate
- Ensure the Dock Light is “Green” before opening up the trailer door

Next, check the condition of the trailer compartments and components:

- Verify Operational Readiness of the Trailer
 - No Debris/Obstructions
 - Cleanliness Check (Free of pest, microbes, etc.)
 - Bulk Head(s) are functional
 - Straps and Load bars (E-tracks) are functional

Finally, verify that the trailer is properly pre-cooled and operationally ready to be loaded. If not previously completed before the trailer was positioned at the dock, trailer air temperatures must be confirmed in in the forward (nose) section and the back (tail) section of the trailer. **Remember, checking the refrigeration set points is not enough to confirm whether or not a trailer is pre-cooled.**
5.2. Refrigeration Unit Operating Procedures – Pre-Loading

It’s imperative to follow proper refrigeration unit operating procedures when transporting refrigerated cargo. Before picking up a load, always run the refrigeration unit in high speed cool for at least 20 minutes and perform an automatic Pre-Trip. The unit MUST pass the Pre-Trip test. If it doesn’t, follow your companies prescribed procedures.

Set the unit controller to the desired set-point temperature, as determined by product, customer and/or shipper requirements. Refer to the unit Operators Manual for instructions on how to operate your specific unit. Once changed, always double check the setting to ensure it was set properly and to help prevent potential cargo damage that can result from an improperly set temperature.

Upper Control Limits (UCL) are critical for optimizing shelf life and for control of food spoilage and poisoning organisms that grow on frozen and chilled cargoes. In fact, the advantages of setting and locking the data loggers upper and Lower Control Limits (LCL) are ominous. Today’s refrigeration units can be set up for Hazard Analysis of Critical Control Point (HAACP) plans targeted at establishing time-temperature critical limits. The critical limit is the point that if exceeded, the safety of the product may be questionable. In practice, the typical operating limit for a carrier would be more restrictive than the critical limit. If the operating limit is triggered, a carrier should take corrective action to fix a problem before it becomes “critical.”

Select the proper operating mode as appropriate for the cargo being transported and/or per shipper requirements. Choose either the CONTINUOUS RUN or the CYCLE-SENTRY (also known as “START-STOP”) mode appropriate for the cargo being transported. Operating a unit on CYCLE-SENTRY with cargo that requires tight temperature control or continuous airflow operation is not recommended and can result in product hot spots and / or top freezing. Refer to the most recent CONTINUOUS RUN/CYCLE-SENTRY/START-STOP Operation & Diagnosis manuals from your refrigeration unit manufacturer for additional details.

Before loading and if specified by the shipper, pre-cool the trailer box with the doors closed in order to remove residual heat from the walls, floor and ceiling. This will increase the likelihood of successfully maintaining the desired temperature throughout the entire transit time. Turn the refrigeration unit ‘OFF’ when product is ready to be loaded and BEFORE box doors are opened.

It should be emphasized that best practices guidelines consistently indicate that the refrigeration unit should be turned off when the doors are open. During loading and off-loading (devanning), and at all times when the trailer door is open, the refrigeration unit must be off to ensure optimum unit performance and cargo integrity.

Turning off the refrigeration unit when the doors are open prevents:

a. Moisture from accumulating on the evaporator coil
b. Ice accumulation on the coil
c. Poor refrigeration performance
d. Blockage of conditioned air movement to the cargo
Furthermore, running the reefer unit when railcar doors are open causes:

- a. Hot ambient humid air to condense on cargo
- b. Ice and hoarfrost accumulation on the cargo and interior of the trailer (white frost that occurs when water vapor touches surface of frozen cargo and the railcar)
- c. Wet cartons, cargo thawing and temperature abuse

5.3. Product Packaging

Proper packaging is critical to ensuring product protection during transport. Choose high quality crush resistant packaging to minimize potential product damage when transporting refrigerated cargo. Solid-side, or non-vented packaging is typically used for frozen products and chilled meat. Vented-side, top and bottom packaging is recommended for fresh, or chilled respiring products.

5.4. Staging the Product (Pallets) and Cargo Temperatures

Most products, with a few exceptions like bananas, which are loaded at ambient temperatures, should be at the specified shipping temperature at the time of loading. Always pre-cool and store the cargo at its desired temperature to remove any field heat from the cargo and packaging. Removing both heat sources before loading helps ensure the refrigeration unit can maintain the desired temperature during transit.

The product (pallets) should be staged in a loading zone near the loading dock and ideally pre-positioned in a Cool Dock in order to maximize trailer-loading efficiency. The quicker the loading process, the quicker you can close the trailer doors which will help reduce the thermal loss and the stabilization of consistent temperatures. Use a thermometer to check the products internal (or pulp) temperature before loading. There are various thermometer types available to choose from for this purpose.

Remember: With a few exceptions (like bananas), refrigeration units are designed to maintain product temperature, not change it. If the cargo is not at the desired temperature before loading, the refrigeration unit may not have enough time or capacity to achieve the desired product temperature pull-down during transit.

A sample Staging Checklist has been provided in the Appendix of this document.

5.5. Loading the Trailer

After all preliminary work has been completed trailer loading can begin. Loader(s) should only use approved jacks and/or forklifts to load the trailers. Pallets should be loaded in the proper sequence as defined in approved Load Diagrams (see examples elsewhere in this section).

Generally, in multi-temperature zone loads, frozen products are loaded first in the nose of the trailer, followed by the fresh products. Bulkhead walls are used to separate the compartments and seal off the frozen section. Temperature loss in the rear of the trailer is common since the loading dock is typically a “cool dock” which is consistent for loading fresh products.

Load the product quickly and efficiently and use loading patterns that maximize air circulation ‘around’ and ‘through’ the entire load for frozen cargo and chill cargoes, respectively. Frozen
product should always be palletized and centerline-loaded in order to maintain a cold air envelope around all six sides of the load. Pallet placement must allow refrigerated air to pass between the load, the walls, and the floor. This is particularly important for trailers with low insulation levels for loads shipped under extreme hot or cold weather conditions, for produce items that are extremely perishable, and for trips that last for more than a day or so.

The main objective is to develop a cold air envelope around freeze and non-respiring chill cargoes (like chilled meat) and movement of conditioned air around and though the entire load for respiring cargoes like fruit and vegetables.

The pallet loading pattern (pallet placement) in a trailer should allow conditioned air to pass between the load, walls and the floor. Air flows between the walls and the load only if the pallets or cargo are not touching the walls. Additionally, cargo height should not extend high enough to touch the air chute because air space above the load and unrestricted air flow are needed to distribute conditioned to the walls, floor, cargo and rear of the trailer.

Centerline loading (see diagram below) is a preferred loading pattern since it permits airflow between the walls and the load and utilizes inflatable airbags, foam blocks or other materials to keep the pallets stabilized in the trailer without touching the walls. Since a good deal of heat enters the trailer from the floor, the load should have a bottom air path to prevent product heating. Do not block airflow underneath the load with boxes stowed on the floor or anything that covers pallet forklift openings will block airflow.

Consider the following when loading refrigerated containers:

- Limit access to the trailer during loading to Loader(s) only to ensure safety
- Load product quickly and efficiently from staging area
- Reduce surface contact of product with storage area and loading equipment
- Loading placement should account for proper airflow around all product loaded
 - Refrigeration return air and discharge air openings should not be blocked
 - Pallets openings should not be obstructed (i.e., no shrink wrapping or slip sheets for respiring cargoes like fruit and vegetables)
- Pallet placements should re-enforce the stability of the load
 - Place pallets side by side to avoid tipping during transit
 - Spacer pallets should be used is an empty grid position
- Bulkheads should be properly secured between frozen and chilled compartment
 - Bulkheads must open for the load to be unloaded safely
 - Secure bulkhead securely into place with strap(s)
- Load bars and straps should be used to properly secure and stabilize the load
 - Lock and secure E-track connectors
 - Tighten straps and secure loose ends so they don’t touch the floor

Important to note: Loading patterns will be different for refrigerated containers, trailers and railcars.
Once loaded, physically stabilize the load to help prevent potential cargo damage due to load shifts that may occur during transit. The use of strip curtains is another way to minimize inside and outside air exchange and the resulting box temperature change during loading. Strip curtains help keep conditioned air ‘In’ and outside air ‘Out.’

5.6. Trailer Loading Best Practices

- Verify the product being loaded is within the appropriate temperature limits for the product type. The shipper of the product typically establishes these limits.
- Temperature verification can usually be accomplished by placing a calibrated thermometer between two cases of product and recording the stabilized temperature. It is recommended to perform this verification for product being loaded in the nose, middle and tail of the trailer.
- If a multi-delivery load, pallets to be delivered last will be loaded first (in the front of the trailer).
- If the order does not completely fill the trailer, a “Load Bar” should be used to stabilize the load. The load bar should be placed between the wall of the truck and the palletized products, directly behind the last pallets loaded onto the trailer.
• Any product damaged during trailer loading should be immediately addressed according to the customer’s previously stated expectations.
• Care should be taken to ensure that the top cases in the trailer do not inhibit airflow from the refrigeration unit in the trailer. It is important to maintain proper and unobstructed airflow around the pallets in the trailer to prevent temperature variations or abuse.
• Bulkheads should be used to separate refrigerated from frozen sections of the trailer.
• Loading the trailer should proceed in an expeditious manner to prevent product temperature abuse.
• After the load has been verified by all interested parties (including the driver), ensure the material handling equipment has been removed from the trailer, raise the dock plate to its stored position, and release dock restraint.
• Place a unique security seal on the truck door and record the seal number on the shipping paperwork.
• After the trailer has moved from the dock, close the dock door to prevent pest ingress.
• Appropriate records should be maintained for all activities for traceability/recall purposes (lot number and quantity shipped per item, shipping destinations, product temperatures, trailer temperatures – set-point and actual, etc.)

A sample Loading Checklist has been provided in the Appendix of this document.

5.7. Airflow

Today’s refrigeration units generally have plenty of cooling capacity to remove heat from pre-cooled cargo and its surroundings. However, because of poor loading, packaging and unitizing practices, the refrigerated air delivered to the cargo space from the refrigeration unit cannot remove the heat from the perishable cargo and from all sides of the load and then return the heat back to the refrigeration unit.

Proper airflow throughout the refrigerated box is critical in maintaining good quality product. Poor air distribution is one of the primary causes of product deterioration. This is the case even when the refrigeration unit capacity is more than adequate.

When loaded properly, there should be sufficient airflow to maintain cargo temperature throughout the entire cargo space. Physical obstructions or restrictions within the box can cause poor airflow and result in product ‘hot spots.’ Moreover, short-cycling of conditioned air due to poor stowage can lead to hot spots in the load, which in turn causes a myriad of types of cargo losses. Improper stowage is a leading cause of poor temperature management and cargo losses. Inadequate airflow resulting from poor stowage of cargo can also be a root cause of food quality and safety problems and HACCP violations.

Computerized refrigeration units that sense and record short-cycling of improperly loaded trailers, have immediate practical applications by protecting carriers from high cargo temperature related food safety and quality problems as well as unnecessary claims and litigation.

The refrigeration unit delivers conditioned air that either adds or removes heat from the air in the cargo space of the trailer. The process of delivering conditioned air is called air distribution. The time to achieve the desired cargo temperature, called pull-down, is dependent on uniformly distributing
the conditioned air to the cargo. Inadequate air distribution is a major cause of perishable cargo losses even with optimally designed refrigerated units and trailers. To optimize temperature reduction (pull-down) and uniformly manage temperature throughout the load, proper air distribution is essential.

The goal of good airflow management is to circulate air around each chilled perishable item and to surround the entire load with conditioned air. The key to success is to avoid short-cycling of conditioned air and to permit conditioned air to flow unrestricted around the perishable items and to all six sides of the load.

Short-cycling is typically due to missing or damaged bulkheads and air ducts and/or vertical channels in the stowage of the cargo. Short-cycling permits conditioned air from the refrigeration unit to return prematurely back to the refrigeration unit without adequately circulating around the cargo. The refrigeration unit performance is based on the temperature of the air that returns back to the refrigeration unit’s thermostat sensors. When the cargo is loaded properly, the refrigeration unit’s thermostat senses the temperature of air returning from the entire load. In contrast, when short-cycling occurs, the refrigeration unit may not be operating at the desired performance level because the thermostat senses air that has bypassed some or most of the cargo.

Short-cycling of conditioned air due to poor stowage can lead to hot spots in the load, which in turn can cause a myriad of cargo loss types. In fact, improper stowage is a leading cause of poor temperature management and cargo losses. Computerized refrigeration units that sense and record short-cycling of improperly loaded trailers, can have immediate practical applications by protecting carriers and cargo interests from damages caused by high cargo temperature and from food quality problems as well as unwanted claims and litigation.

Another leading cause of poor air distribution with tight loads is blockage of air by plastic wraps, slip-sheets and two-way pallets or pallets with inadequate fork lift pocket openings. Cargo should always be stacked on double-faced pallets with sufficient forklift openings on all four sides (four way pallets). Moreover, plastic should not be wrapped around the unitized palletized loads of respiring cargoes because refrigerated air is needed to remove the heat of respiration. The use of slip-sheets positioned directly on flat surface or diamond plate floors is not recommended because conditioned air cannot flow under the cargo.

Stacking cargo directly on the floor or against the sidewalls can cause product warming or chilling. With palletized centerline loads, the cargo is held away from the sidewall and floor surfaces; there is no warming or cooling of the cargo due to contact with the sidewall or floor surface.

The majority of temperature management problems are preventable. Proper loading practices and achieving good airflow distribution are essential for the maintenance of desired temperature management. All those involved in the handling of perishable cargoes can help contribute to improved temperature management and fewer cargo losses by making sure that a stowage checklist are followed.

A sample Stowage Checklist has been provided in the Appendix of this document.

In order to create proper air circulation, adequate ‘air’ space around all six sides of the load is required. Every effort should be made to minimize airflow restrictions.
There are four (4) key factors to consider in achieving proper airflow:

1) **Floor Design and Cargo Placement**: Regardless of the floor design used, minimizing airflow restrictions throughout the entire box is critical. This ensures that air can reach the cargo quickly and efficiently. When using pallets, be sure they have open ends and sides that will allow unrestricted airflow both ‘under and through’ the slats all the way from the front to the rear of the box. If using plastic wrap, do not install it below the top surface of the pallet. The use of slip-sheets and hand stacking cargo is NOT recommended and is not optimal for cargo temperature management.

2) **Cleanliness**: The inside of the box must be clean to prevent contamination hazards, and the floor channels and refrigeration unit return air stream must be free of obstructions and airflow restrictions. Loose debris such as shrink-wrap, paper, cardboard or any other type of debris can be pulled into the unit evaporator, resulting in insufficient airflow and potential cargo damage.

3) **Cargo Loading Patterns**: Select a loading pattern that will provide sufficient airflow around and through the entire load. This ensures conditioned air from the refrigeration unit can reach all of the cargo. Always leave adequate space between the top of the cargo and the ceiling. Too little space can cause the discharge air to ‘short cycle’ in the front of the box resulting in ‘too little’ airflow in the rear. The result: the cargo in front will be too cold and the cargo in the back will be too warm. Do not place cargo directly in front of, or tightly up against the refrigeration unit, walls or doors. This will only prevent conditioned air from reaching portions of the cargo, which will inhibit proper temperature.

4) **Blockage of Unit Evaporator Inlet and outlets (supply and return air registers)**: Ensure that the refrigeration unit evaporator inlet and outlet air paths are not obscured. If blocked, airflow and unit capacity will be reduced, making it difficult (perhaps impossible) for the unit to maintain cargo temperature.

![Figure 2: Courtesy of University of California Refrigerated Trailer Transport of Perishable Foods](image-url)
5.8. Refrigeration Unit Operating Procedures – Post-Loading

It’s imperative to follow proper refrigeration unit operating procedures when transporting refrigerated cargo.

After loading is complete, close the doors immediately, start the refrigeration unit and re-confirm the correct operating mode and set-point have been selected.

Initiate a manual defrost cycle to remove any frost or ice from the evaporator coil and to help ensure maximum cooling performance after defrost is completed. When defrost is complete, the unit should return to normal operation. The box temperature should then begin to return toward the ‘desired’ cargo temperature.

5.9. Trailer Post-Load Verification and Inspection

Once the trailer is loaded, a final review should be conducted before closing the trailer doors, including but not limited to the following components:

- Verify Bill of Lading (BOL) paperwork
- Verify all pallets have been loaded
- Verify Load Diagram
- Check load for proper airflow
- Check that bulkheads, load bars and straps are properly secured
- Close Trailer door, latch, lock and secure door seals

5.10. Securing the Loaded Trailers for Staging

The final step in the loading process is to safely move the trailer to the staging area of the yard. Typical steps to follow include:

- Raise dock plate
- Close dock door
- Ensure the dock light turns “Red”
- Proceed outside wearing a reflective safety vest
 - Remove glad hand lock
 - Remove wheel chocks
- Ensure any changes or special information for the driver is marked clearly on the load diagram
- Place load diagram into the route folder and turn-in to the supervisor
- Notify appropriate personnel that the trailer is now ready to be moved to the staging area

6. Staging Loaded Trailer Back On to the Yard

Next to the pre-cooling of trailers, the staging of trailers in the yard is of critical importance. The staging process allows for the trailer to re-stabilize the internal trailer temperature prior to delivery process. Stabilizing compartmental temperatures in the trailer helps to defer the loss of product temperature that
may occur during the delivery process. The staging process also ensures security measures are in place to protect the load.

The shipper’s PCQI is responsible for having specific requirements of the loaded trailer staging process documented in their FSP. Generally, the specific actions center on the following areas:

- **Verify the Loaded Trailer:** Once the trailer is ready for staging, verify that the trailer is properly loaded, locked and assigned to a route and cross-check that steps reviewed in Section 5.8 were completed.

- **Verify the Refrigeration Unit Status:** Ensure that the refrigeration unit was turned on after loading and set to proper requirements. Refer to the operating manual to ensure set point, mode of operation and modulation settings are correct and meet specific load and FSP requirements. Also, check the fuel level on the tank to ensure adequacy.

- **Securing the Trailer:** Install Door Seals, a commonly used tool to validate trailer security, in accordance with security compliance. Door seals have unique serial numbers or ID numbers that should be registered on each load. The basic principle is that if a door seal is missing or broken there may have been a breach of security by an un-authorized person and the load could be subject to tampering and/or theft. Door Seals should be installed on each door of the trailer.

- **Moving the Trailer to Staging Area:** Once ready, the trailer should be parked in its designated pick-up location so that the driver can easily pull-in, hook-up and drive off to begin the route. Its location should be reported to the Dispatch office as appropriate.

6.1. Monitoring of Staged Trailers

It is extremely important to monitor the trailers in the staging area. Physical security should be provided in the form of gates or guards, and real-time trailer monitoring is recommended.

Real-time telematics devices provide an excellent platform for monitoring trailers throughout the distribution process, including staging.

During the staging process, real-time electronic checks continually check:

- Fuel Levels
- Refrigeration Unit Settings
- Location/Position (GPS)
- Door Seals

If the trailer does not have real-time telematics devices installed, the security of the trailer and yard personnel should check its contents until the trailer is dispatched.
7. Departure and Arrival Process for Loaded Trailers

Departure and arrival procedures for loaded trailers will vary by site and are dependent on factors such as the physical layout of the campus, use of guard services, staging capabilities, and company policy. Ultimately, the PCQI at each facility is responsible for documenting the specific practices and procedures required in the facility’s FSP. The documentation should be available and communicated with drivers/carriers and facility personnel to ensure compliance.

- Procedures should be documented and published in an approved facility FSP.
- Procedures should be reviewed regularly and updated as necessary to meet changing needs.
- Procedures should be made available to carriers prior to arrival to ensure a thorough understanding of requirements and to streamline processing time.

A sample Shipping Checklist has been provided in the Appendix of this document.

7.1. Centralized Check In Location

The warehouse/facility should have a designated driver check-in location (sometimes an office or guard shack). In larger facilities, with more than one check-in location, care should be taken to provide sufficient signage that is visible, well-placed and offers clear instructions and guidance to assist drivers, ensure efficiency and mitigate security and safety concerns.

Arrival and departure procedures should be communicated to the driver/carrier prior to arrival to ensure all proper paperwork and required information is made available to prevent delays in the process. Notification of procedures can be accomplished through notes in EDI transmissions, via email confirmations, or through some other method during the load tender process.

All documentation such as Bills of Lading, Manifests, logs, etc. should be retained in accordance with local, company, and customer retention policies.

7.2. Arrival Procedures – Inbound, Outbound Carrier

Similarities may exist between arrival procedures of both inbound and outbound carriers at the site. While processes and procedures will vary from site to site, it is important that standardized procedures for inbound and outbound carriers be consistently followed. Copies of standardized documents should be provided to carriers in advance of arrival.

Sample Inbound and Outbound Arrival Procedure Checklists have been provided in the Appendix of this document.

7.3. Departure Procedures – Inbound Carrier

Verification of the trailer being unloaded should be completed by facility personnel/management using documented on-site procedures, as per PCQI FSP. The carrier/driver should also verify that the load was properly unloaded and that only the freight destined for the site was processed (in the case of multi-stop loads).
Once verification of unload is complete, the driver is ready for release from the facility. The driver should proceed to the pre-determined check-out location. This is normally the same location as check-in, but if it is different, the driver should be made aware of this during the check-in process.

- The check-out personnel should retrieve any relevant and appropriate paperwork associated with the load during the check in procedure.
- The driver should sign any appropriate paperwork as necessary.
- Driver will be hand all appropriate paperwork, including a signed BOL, manifest, etc. as well as a gate pass if necessary.
- The driver is now clear for departure.
- The local site should update its logs and paperwork, note the time that unloading of the trailer was completed, as well as the time the driver was cleared for departure.

7.4. Departure Procedures – Outbound Carrier

Verification of the trailer being unloaded should be completed by facility personnel/management using documented on-site procedures. The carrier driver should also verify that the load was properly loaded and secured in accordance with carrier requirements and site procedures and protocol, as per PCQI FSP.

Once verification of the trailer unload is complete, the driver is ready for release from the facility. The driver should proceed to the pre-determined check-out location. This is normally the same location as check-in, but if it is different, the driver should be made aware of this during the check-in process.

The check-out personnel should retrieve any relevant and appropriate paperwork associated with the load during the check in procedure. At a minimum, outbound paperwork should contain:

- Bill of Lading
- Loading Diagram
- Copy of Order
- Temperature Recorder Paperwork
- Any carrier control forms required

Before departing:

- The check-out personnel should validate that the paperwork is accurately and completely filled out.
- The driver will be handed all appropriate paperwork as well as a gate pass if necessary.
- The driver should sign any appropriate paperwork as necessary, including driver logs, bill(s) of lading, etc. and provided copies.
- The site will retain similar copies following corporate or local retention policies.
- The driver is now clear for departure.
- The local site should update its logs and paperwork, noting the time that unloading of the trailer was completed as well as the time the driver was cleared for departure.
7.5. Post-Trip Inspection – End of Route

At the conclusion of the trip/route, drivers should conduct a post-trip inspection to verify the conditions of their vehicles. The standard Driver Vehicle Inspection Report (DVIR) for tractors and trailers are a good guide for post-trip inspections:

- Vehicle Conditions
 - Brakes
 - Electrical
 - Emergency
 - Engine
 - Instrument Panel
 - Refrigeration
 - Rear Axle
 - Steering
 - Transmission
 - Tires
8. En-Route Requirements

Monitoring the trailer while in transit provides the operator with valuable information about the quality and performance of the trailer and the driver. Unless a shipper takes other measures to ensure that adequate temperature control is provided during the transportation of food that requires temperature control for safety under the conditions of shipment, a shipper of such food should specify in writing to the carrier, and, when necessary, the loader, an operating temperature for the transportation operation. This includes the pre-cooling phase.

One-time notification should be sufficient unless a circumstance such as the conditions of shipment changes, necessitating a change in the operating temperature.

8.1. Temperature Monitoring Recommendations

Industry best practices dictate that effective measures should be taken to ensure that food that requires temperature control for safety is transported under adequate temperature control. The shipper of food that requires temperature control for safety under the conditions of shipment should develop and implement written procedures, to ensure that the food is transported under adequate temperature control. Measures to ensure the safety of the food may be accomplished by the shipper or by the carrier or another party covered (as dictated by a written agreement).

In order to maintain proper product temperatures during transit it is imperative that the compartmental air temperatures are being monitored on a real-time basis. If the air temperature is properly maintained, the product temperature cannot go out of threshold specification.

The specific transport temperature requirements will vary by load and shipper, as per the approved FSP plan specification. It is imperative for carriers to review shipper requirements and ensure they are attainable and that the necessary technology is available to deliver.

8.2. Data Collection

Data collection of real-time transit information requires the use of a Telematics device. Telematics devices in the cold chain industry will have GPS; GSM/GPRS; temperature and door sensors.

Depending upon the environment, the telematics units can be set to report every 5, 15, 30, 60 minutes or at any custom setting. Due to the importance of this data, it is recommended that data transmissions should be every 5 minutes but no longer than 15 minutes. Communications costs continue to come down each year and having access to more granular data allows for more frequent data, which provides more time to initiate potential corrective actions.

During transit, a Telematics unit will provide a host of information on regular intervals. Today’s technology allows many options and customized settings to secure the data and information desired. Examples of the types of data that can be collected, saved and communicated real-time include:

- GPS location
• Reporting Time
• Compartmental Temperatures
• Product Temperatures
• Door Status (for security)
• Fuel Status
• Event Notifications
 o Temperature violations
 o Late Arrival violations
 o Out of Territory violations
 o Un-authorized Access

8.3. Temperature Monitoring & Reporting

The results of each route/trip should be properly documented, saved electronically and available for online access. This data should be integrated into the traditional route/trip report; however, other reports could be generated such as a:

• Trip Report
• Temperature Management Report
• Route Event Report
• Out of Territory Report
• Any many other customized reports

Actual reporting requirements are dictated by the shipper.

9. Load Acceptance Procedures

The criteria and procedures for load acceptance should be written into individual FSPs by the shipper’s PCQI.

Actions that should be specifically documented and need to be met by the carrier will ideally include:

• Visible assessment
 • Odors, product leakage, damage to containers, etc.
• Temperature requirements
 • What are the acceptable maximum/minimum temperature ranges of the particular load?
 • Was it maintained throughout transport? – View required documentation/reports as dictated by shipper FSP
 • Is product in acceptable range at offload?
• The speed and efficiency of product unloading
 • How quickly does the unloaded product need to be placed into an equivalent temperature controlled area?
 • What timeframe is required to be met?
Receivers of perishable foods are actively engaged in transportation operations, and as such have certain responsibilities to ensure the sanitary transport of food. Specifically, upon receipt of food that requires temperature control for safety under the conditions of shipment, the receiver should take steps to adequately assess that the food was not subjected to significant temperature abuse, such as determining the food's temperature, the ambient temperature of the vehicle and its temperature setting, and conducting a sensory inspection (i.e. off-odors).

The carrier should, once the transportation operation is complete -- and if requested by the receiver or shipper -- provide the operating temperature specified by the shipper. The carrier should also be prepared to, if requested by the shipper or receiver, demonstrate that the correct, shipper-requested temperature conditions were maintained during the transportation operation. Such demonstration may be accomplished by any appropriate means agreeable to the carrier and shipper, such as the carrier presenting measurements of the ambient temperature upon loading and unloading or time/temperature data taken during the shipment.

A sample Receiving Checklist has been provided in the Appendix of this document.

10. Records Retention

The shipper and carrier should agree to a temperature monitoring mechanism for foods that require temperature control for safety. Carriers should only have to demonstrate that the requested temperature conditions were maintained upon request, rather than for every shipment.

There are a number of effective ways to ensure temperature control including a thermometer; temperature-measuring device or temperature-recording device. The demonstration should only be made if the shipper or receiver requests it, which is consistent with industry best practices and would likely only be done in situations in which it is suspected that there has been a material failure of temperature control.

Shippers should retain records that demonstrate that they provide specifications and operating temperatures to carriers and as a regular part of their transportation operations for a period of 12 months beyond the termination of the agreements with the carriers. They should also retain records of written agreements and the written procedures required for a period of 12 months beyond when the agreements and procedures are in use in their transportation operations.

Carriers should retain records of the written procedures for a period of 12 months beyond when the agreements and procedures are in use in their transportation operations. They should also retain training records for a period of 12 months beyond when the person identified in any such records stops performing the duties for which the training was provided.

Written agreements for any tasks assigned between shipper and carrier should be retained for a period of 12 months beyond the termination of the agreements by all parties. Shippers, receivers, loaders, and carriers should make all records available to duly authorized individuals when requested. The records...
should be kept as original records, true copies (such as photocopies, pictures, scanned copies, microfilm, microfiche, or other accurate reproductions of the original records), or electronic records.

11. Conclusion

Food Safety Plans are an industry best practice to ensure the sanitary transportation of perishable food products, and constitute a shipper’s documentation of safe and sanitary transportation of human and animal food. Carriers, loaders and receivers should fully understand the requirements of Shipper FSPs and their responsibilities, and be able to comply.

Maintaining pre-requisite process documentation will enable the carrier to support its position should claims or lawsuits arise out of the act of carriage. However, maintenance of records alone may not be enough to defend against all claims and suits. It is recommended that the carrier seek legal and risk management counsel prior to commencement of business to limit its exposure. It is also recommended that the carrier conduct periodic review of contracts and pre-requisites to ensure that the company is compliant with the latest regulations and good business practices.
12. Appendix

12.1. Trailer Inspection Checklist

<table>
<thead>
<tr>
<th>Facility Information:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipper:</td>
<td></td>
</tr>
<tr>
<td>Bill of Lading Number:</td>
<td></td>
</tr>
<tr>
<td>Unit Number:</td>
<td></td>
</tr>
<tr>
<td>Ship Date:</td>
<td></td>
</tr>
<tr>
<td>Ship To:</td>
<td></td>
</tr>
<tr>
<td>Inspector:</td>
<td></td>
</tr>
<tr>
<td>Today’s Date:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vehicle Information:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trucking Line:</td>
<td></td>
</tr>
<tr>
<td>Driver’s Name (Optional):</td>
<td></td>
</tr>
<tr>
<td>Trailer License Number (Optional):</td>
<td></td>
</tr>
<tr>
<td>Trailer Number:</td>
<td></td>
</tr>
<tr>
<td>License Plate (State):</td>
<td></td>
</tr>
</tbody>
</table>

Trailer or Container Inspection Check List:

<table>
<thead>
<tr>
<th>Area</th>
<th>Item</th>
<th>Satisfactory Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigeration Unit</td>
<td>Refrigerator Thermostat Properly Set</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refrigerator Unit Temperature Setting (Degree F):</td>
<td>Degrees</td>
</tr>
<tr>
<td></td>
<td>Refrigerator Unit Operational</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vents Closed/Open</td>
<td></td>
</tr>
<tr>
<td>Cleanliness</td>
<td>Overall Trailer Condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Floors Free of Rubbish, Product Residue or Insects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walls Free of Product Residue and Tape</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drains Open & Unobstructed (Free Flowing)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absence of Odor(s)</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Ceiling Undamaged</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air Delivery Chute Intact & Functional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Door Seals Intact & in Good Repair</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Door Undamaged</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walls & Wall Insulation Undamaged</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Floors in Good Repair</td>
<td></td>
</tr>
</tbody>
</table>

Final Result: **Satisfactory for Loading**

Comments:
12.2. Checklist for Properly Staging Products for Loading

- Verify Jacks and Forklifts are operational
 - Use approved equipment types for loading
 - Battery and/or fuel levels
- Verify Temperatures with properly calibrated devices
 - Cool Dock environment
 - Product pulping temperatures
- Verify Load and Pallet integrity
- Ensure BOL and shipper requirements and confirm load
 - Ensure that pallets are at proper height and will not block normal airflow
 - Ensure proper packaging of products to be transported before loading
 - Identify potential cross contamination issues
 - Stabilize pallets
 - Shrink-wrap pallets
- Pre-position refrigerated products (pallets) near the dock door
 - Arrange pallets in accordance of loading sequence based on product mix, delivery schedule, or shipper requirements

Suggested steps include:

- Secure the Glad Hand Locks
- Secure the Wheel Chocks
- Ensure the trailer is properly spotted in the Dock Door
- Ensure that the dock door is not opened until Trailer is spotted and secured

Once the trailer is physically secured and in position, warehouse personnel should:

- Secure the Dock Door Seals
- Raise the Dock Plate
- Ensure the Dock Light is “Green” before opening up the trailer door

Next, check the condition of the trailer compartments and components:

- Verify Operational Readiness of the Trailer
 - No Debris/ Obstructions
 - Cleanliness Check (Free of pest, microbes, etc.)
 - Bulk Head(s) are functional
 - Straps and Load bars (E-tracks) are functional
12.3. Trailer Loading Checklist

☐ Verification of Product packaging
 ☐ Crush proof
 ☐ Non-vented for frozen products or chilled meat
 ☐ Vented for fresh products
☐ Pre-cool and store cargo at desired temperature ‘Before’ loading
☐ Run Unit 20 minutes in High Speed Cool and perform an Auto Pre-Trip to confirm proper operation
☐ Verify Set-Point temperature to ensure that it is set correctly
☐ Ensure correct selection of Continuous Run or CYCLE-SENTRY operating mode to prevent hot spots and top freezing
☐ Pre-cool trailer/body to desired temperature
☐ Verify product temperature to confirm it is at the desired temperature
☐ Turn unit ‘OFF’ while loading to minimize inside and outside air exchange
☐ Air circulation is unobstructed around ALL six sides of load
☐ Stabilize the load to minimize ‘Load Shift’ risk and resulting cargo physical damage
☐ Initiate Defrost Cycle to clear evaporator coil and ensure maximum cooling performance

12.4. Stowage Checklist

☐ The floor is clean and free of debris and off-odors
☐ Trailer interior is free from damage
☐ Door seals are in good repair and floor drains are open
☐ Trailer is pre-cooled to the desired loading temperature
☐ The bulkhead is snug up against the ceiling, floor and sidewalls
☐ Palletized cargo is stowed on clean, four way pallets with openings on all four sides
☐ Cargo does not block the evaporator discharge outlet or return air inlet
☐ Cargo is stowed without chimneys or vertical air paths to avoid short cycling of cold air
☐ Chilled cargo is stowed loosely (not tightly block stowed) with specified spacing between the load and the evaporator inlet and outlet, ceiling, sidewalls, floor and rear divider
☐ Freeze cargo is block stowed (solid stow) with specified spacing between the load and the evaporator inlet and outlet, ceiling, sidewalls, floor and rear divider
☐ Cargo is stowed with spacer of at least 3” between the load and the side walls
☐ Cargo is stowed 3” between the rear of the load and the divider bulkhead (multi-temp)
☐ Cargo is stowed at least 9” between the top of the load and the ceiling
☐ Warmer dry or refrigerated cargoes are separated from cooler chilled cargoes by a space to avoid unwanted heat transfer
☐ Airflow is not blocked by ice, slip sheets, dunnage or plastics wraps
☐ Packaged iced cargo is not stowed on top of other cargoes
☐ Cargoes stowed in the same trailer are compatible with regard to temperature, humidity, ethylene, atmosphere and odors
☐ Portable temperature recorders are positioned to sense cargo air temperatures (generally on the top of load about 1/3 to 2/3 of the way to the rear of the load)
12.5. Shipping Checklist

CRITICAL INFORMATION:

| Customer Name: | Customer Contact: |
| Customer Phone: | Customer Fax: |

Load Information:

Purchase Order or Release Number:	Number of Cases or Units:
Number of Different Items in Load:	Type of Loading (pallet, floor, slip sheets):
Temperature of Load (chilled or frozen):	Estimated Arrival Time at Facility:
Participating Pallet Exchange Program?	Name of Carrier:

ACTION ITEM:

<table>
<thead>
<tr>
<th>RESPONSIBLE PARTY:</th>
<th>COMPLETED BY:</th>
<th>DATE & TIME:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign or record PO or Release Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtain loading diagram from customer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notify shipping dock of truck arrival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collect appropriate paperwork from driver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collect appropriate I.D. from driver (photo or copy of Driver’s License)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document truck arrival time at plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify customer data from table above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolve any discrepancies in paperwork, notify customer of any changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assign shipping door for loading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Send appropriate paperwork to shipping dock supervisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enter data into database (if appropriate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify the condition (cleanliness and odor) of the trailer. If dirty, have driver take appropriate cleaning action(s) or contact the customer for additional direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensure proper trailer position at dock, verify that safety procedures have been followed (wheel chocks, ICC bars, dock plate, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document any trailer damage (insulation or door closures and seals)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify that floor drains are closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify that trailer refrigeration unit is running and that the trailer is pre-cooled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collect Appropriate Loading Data:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Pick Up or PO number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrival time at dock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start time of loading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collect Appropriate Loading Data:</td>
<td>End time of loading</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Thermostat setting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of pallets in the truck at arrival (for pallet exchange programs)</td>
<td></td>
</tr>
<tr>
<td>Obtain proper product for shipment from warehouse or staging area</td>
<td>Verify case counts</td>
<td></td>
</tr>
<tr>
<td>Cross-Check Loading Process:</td>
<td>Cross-check item codes (SKU)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross-check lot numbers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross-check delivery and pick tickets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collect “catch” or “take” weights, if required by the customer</td>
<td></td>
</tr>
<tr>
<td>Cross reference load information with Purchase Order (PO), correct any discrepancies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Request that the driver count the products submitted for shipment (Optional, if the driver is allowed on the dock)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have the driver sign the delivery ticket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close the trailer doors upon completion of loading and verification. If the trailer is sealed, record the seal number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify that all information on this form is correct, signatures and date/time is entered.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12.6. Arrival Procedures – Inbound Carrier

Processes and procedures will vary from site to site; the following list is an example of commonly seen procedures.

- Upon arrival, driver proceeds to the pre-designated check-in location (Guard Shack, Office or Welcome Center)
- Check-In personnel obtains appointment number and the Bill of Lading (BOL) from driver
- Check-In personnel verifies that the driver is at the correct location
 - If not, driver advised to contact his/her dispatch
 - If so, procedure to check in procedure
- Driver is “logged” into facility (electronic or paper/manual process).
- Collect Information:
 - Carrier Name
 - Driver Name
 - Arrival Time
 - Verify if a seal is required and present
 - Inspect the trailer for seal
Verify seal number against paperwork for match

Note: If a seal is required but not present you should document exceptions on internal documentation (trailer inspection logs or other forms) and BOL (i.e. Broken, Missing, Invalid/No Match). Company, or Customer Specific procedures should be followed for dealing with exception, including but not limited to:

- Contact the customer to determine handling requirements
- Determine if load should be accepted:
 - If accepted, follow remaining arrival procedures
 - If rejected, notify carrier/carrier dispatch and document accordingly

If the site is an appointment only site, then the check-in personnel should validate the driver’s appointment

If an appointment is verified, then driver should be assigned staging location (Dock Door, Drop Lot or Sit-Lot)

If no appointment, then the driver should contact his/her dispatcher to verify

Non-Appointment sites will follow similar procedures as above, but likely on a first-come/first-serve basis

Any discrepancies or variations to expectations on the inbounding of the carrier should be noted with detail in the event of need for further follow up

Upon completion of arrival process, staging and/or unload procedures will be followed

12.7. Arrival Procedures – Outbound Carrier

Processes and procedures will vary from site to site; the following list is an example of commonly seen procedures.

- Upon arrival, driver proceeds to the pre-designated check-in location (Guard Shack, Office, Welcome Center)
- Driver provides appointment number and any other appropriate or required documentation to the check-in personnel
- Driver verification is determined
 - Correct location, destination and consignee
 - Appointment-only site; verify appointment
 - Non-appointment site; first come, first served
 - Discrepancies should be noted
- Driver is “logged” into facility via established process (electronic or paper/manual):
 - Collect Information:
 - Carrier Name
 - Driver Name
 - Arrival Time
 - Trailer/Cab Numbers
 - DL/Identification Number
- Once verified and logged in, drivers are directed to appropriate staging location and load (Dock Door, Drop Lot or Sit-Lot).
12.8. Receiving Checklist

CRITICAL INFORMATION:

<table>
<thead>
<tr>
<th>Critical Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Name:</td>
<td></td>
</tr>
<tr>
<td>Customer Contact:</td>
<td></td>
</tr>
<tr>
<td>Customer Phone:</td>
<td></td>
</tr>
<tr>
<td>Customer Fax:</td>
<td></td>
</tr>
<tr>
<td>Load Information:</td>
<td></td>
</tr>
<tr>
<td>Purchase Order or Release Number:</td>
<td></td>
</tr>
<tr>
<td>Number of Cases or Units:</td>
<td></td>
</tr>
<tr>
<td>Number of Different Items in Load:</td>
<td></td>
</tr>
<tr>
<td>Type of Loading (pallet, floor, slip sheets):</td>
<td></td>
</tr>
<tr>
<td>Temperature of Load (chilled or frozen):</td>
<td></td>
</tr>
<tr>
<td>Estimated Arrival Time at Facility:</td>
<td></td>
</tr>
<tr>
<td>Participating Pallet Exchange Program?</td>
<td></td>
</tr>
<tr>
<td>Name of Carrier:</td>
<td></td>
</tr>
</tbody>
</table>

ACTION ITEM: | RESPONSIBLE PARTY: | COMPLETED BY: | DATE & TIME: |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign or record PO or Release Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtain loading diagram from customer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notify shipping dock of truck arrival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collect appropriate paperwork from driver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collect appropriate I.D. from driver (photo or copy of Driver’s License)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document truck arrival time at plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify customer data from table above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolve any discrepancies in paperwork, notify customer of any changes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assign shipping door for loading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Send appropriate paperwork to shipping dock supervisor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enter data into database (if appropriate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify the condition (cleanliness and odor) of the trailer. If dirty, have driver take appropriate cleaning action(s) or contact the customer for additional direction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensure proper trailer position at dock, verify that safety procedures have been followed (wheel chocks, ICC bars, dock plate, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document any trailer damage (insulation or door closures and seals)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify that floor drains are closed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify that trailer refrigeration unit is running and that the trailer is pre-cooled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collect Appropriate Loading Data:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Pick Up or PO number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrival time at dock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start time of loading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtain proper product for shipment from warehouse or staging area</td>
<td>Verify case counts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-Check Loading Process:</td>
<td>Cross-check item codes (SKU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-check lot numbers</td>
<td>Cross-check delivery and pick tickets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collect “catch” or “take” weights, if required by the customer</td>
<td>Cross reference load information with Purchase Order (PO), correct any discrepancies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Request that the driver count the products submitted for shipment</td>
<td>(Optional, if the driver is allowed on the dock)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have the driver sign the delivery ticket</td>
<td>Close the trailer doors upon completion of loading and verification. If the trailer is sealed, record the seal number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify that all information on this form is correct, signatures</td>
<td>Verify that all information on this form is correct, signatures and date/time is entered.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>